欢迎来到 阿仪网

免费注册

首页 | 产品 | 求购 | 资讯 | 专题 | 找厂商 | 打听 | 品牌 | 资料 | 技术文献 | 展会 | 新品 | 促销 | 招标 | 优质仪器
广告
广告

您的位置:首页>仪器仪表资讯>行业动态>登上《自然》封面!新型化学显微镜在浙大问世

登上《自然》封面!新型化学显微镜在浙大问世

发布时间:2021/8/16 11:48:35编辑:Ma Liang
已有1355人关注

       化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温·薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。
       针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。

 
 
       北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。
       浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。
       3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。
       在时空隔离中达到单分子反应测量极限
       教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。
电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。”
 
       为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。
        利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。”
        在单分子空间定位中突破光学极限
        显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。

 
       受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ”

 
 
       冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。
 
       研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。
 
 
       未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。

微信号:ayiwangapp17

(来源: 中国仪器仪表协会分析仪器分会 )

标签:生物显微镜,金相显微镜,均质器

上一篇:2021基础科研条件与重大科学仪器设备研发重点专项首轮评审专家名单公布 下一篇:国务院办公厅关于完善科技成果评价机制的指导意见

为您推荐

相关新闻

安徽省计量科学研究院“生物显微镜校准装置”顺利通过建标考核 发布时间:2020/12/8 16:46:00
 【阿仪网 行业资讯】此次该标准的建设填补了该项目的安徽省内空白,将为本省及周边地区的相应量值溯源提供有效保障。显微镜是人类最伟大的发明之一。在它发明出来之前,人类关于周围世界的观念局限在用
金相显微镜在工业生产中发挥重要作用 发布时间:2020/9/30 15:19:18
【阿仪网 仪器导购】金相显微镜分为电脑型金相显微镜和数码金相显微镜,它们是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像
广州医科大学采购生物显微镜等仪器设备 发布时间:2019/5/10 16:09:54
广东德信行招标有限公司受广州医科大学的委托,对广州医科大学高水平大学建设教学设备采购项目(三)进行公开招标采购,欢迎符合资格条件的供应商投标。一、采购项目编号:DXH2019GZ033A11-2二、采
原位力学测量仪与拉曼光谱、金相显微镜实现联用 发布时间:2016/9/21 11:39:08
导读:经过3年攻关,课题组攻克了原位力学测试仪器装备的设计、制造与标定等关键技术,突破了原位测试仪器精度校准的技术瓶颈,使加载力分辨率达10mN、加载位移分辨率优于100nm,多项指标取得突破。&nb
运用生物显微镜时应重点关注哪些问题 发布时间:2013/6/26 13:45:07
生物显微镜主要是用来进行生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工
中国地质科学研究所生物显微镜等设备采购项目公告 发布时间:2012/12/5 10:13:43
政府采购项目名称:中国地质科学院地质研究所研究级生物显微镜等设备采购项目  招标编号:0702-1241CITC5Y26采购人名称: 中国地质科学院地质研究所采购人地址:北京阜外百万庄大街26号采购人
广告

图片视点

青岛大学附属医院实验室建设项目竞争性磋商公告

优质产品

版权声明

凡本网注明"来源:阿仪网"的所有作品,版权均属于阿仪网,未经本网授权不得转载、摘编或利 用其它方式使用。已获本网授 权的作品,应在授权范围内使用,并注明"来源:阿仪网"。违者本网将追究相关法律责任。

本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其 真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用 ,必须保留本网注明 的"稿件来源",并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

旗下频道

色谱仪 光谱仪 反应釜 试验箱 试验机 搅拌器 培养箱 离心机 水分测定 气体检测 量热仪 石油仪器 纯水器 比表面仪 温度记录 流量计 万用表 显微镜 粒度仪 测厚仪 硬度计 酸度计 元素分析 生物试剂 电线电缆 天平衡器 传感器 食品检测 压力仪表 电化学 测厚仪 阀门仪表 电力仪表 干燥设备 药物检测